
Introduction to LLVM
Bojian Zheng

CSCD70 Spring 2018

bojian@cs.toronto.edu

1

mailto:bojian@cs.toronto.edu


What you will need for Assignment 1 …

• LLVM: How to write a pass that 

analyzes and transforms
(optimizes) Intermediate 

Representation (IR).

• C++ Fundamentals: Public 
Inheritance (Abstract Class, 
Dynamic Casting), Iterator, 
STL Data Structures

2

Prerequisite



Three-Phase Design – From Source to Binary

3

Front End Passes Back End

LLVM IR LLVM IR

Object Code

Source Code



Three-Phase Design – From Source to Binary

C/C++ Source
int main()

{

return 0;

}

LLVM IR

define i32 @main() … {

ret i32 0

}

4

clang



Example – IR Optimization

• Suppose that we are hoping to replace every 𝑥 × 2𝑁 statement in our 
code with 𝑥 ≪ 𝑁. How can we achieve this?

• Write a Pass that does the followings:

1. Analyzes whether there are statements of the form %𝒑 = 𝐦𝐮𝐥%𝒒, 𝟐𝑵

in our code or not, and where are those statements located.

2. Transforms those instructions with %𝒑 = 𝐬𝐡𝐥%𝒒,𝑵.

5



IR Optimization

• The IR optimizations consist of many optimization passes.

• LLVM itself also has passes for analysis or transformations: 
https://llvm.org/docs/Passes.html

• In this assignment, we will be making use of the mem2reg pass.

• Please DON’T use the LLVM passes unless otherwise told to.

6

https://llvm.org/docs/Passes.html


Questions?

• Keywords:

• Intermediate Representation (IR)

• Optimization Pass

• Analysis & Transformation

7



Analysis

8



How to write an analysis pass?

• We need to understand the following three things:

•Program Structure: How is our program represented in LLVM?

• Iterators: How to traverse through such structures?

•Downcasting: How to retrieve more information from iterators?

•LLVM Pass Interface: Implement LLVM interface.

9



Program Structure

• It is important that we understand how our programs are represented 
after being translated by the LLVM frontend clang:

10



Program Structure

C/C++ Source
• Source File

• Function

• Code Block

• Statement

LLVM IR
• Module contains Functions and 

Global Variables.

• Function contains Basic Blocks 
and Arguments.

• Basic Block contains a list of 
Instructions.

• Instruction is an Opcode plus 
vector of Operands.

11



Program Structure

• A Simplified View (for Understanding ONLY):

typedef std::vector < Function > Module;

typedef std::vector < BasicBlock > Function;

typedef std::vector < Instruction > BasicBlock;

typedef std::vector < Operand > Instruction;

12



How to iterate through the Structures?

• Iterators!

• Recall how you traverse through std::vector
std::vector < unsigned > vec;

for (auto iter = vec.begin(); 

iter != vec.end(); ++iter)

{/* do something */}

13



How to iterate through the Structures?

• Similarly, …
Module M;

for (auto iter = M.begin(); 

iter != M.end(); ++iter)

{/* do something */}

14



Downcasting – Getting More Details

• Suppose that we have an instruction, how can we know whether it is 
an unary instruction? a binary instruction? a call instruction? …

•Dynamic Casting!
• Consider the statement UnaryInstruction * unary_inst = 

dyn_cast < UnaryInstruction > (inst);

15



LLVM Pass Interface

LLVM Interface
class ModulePass

{

bool runOnModule

(Module & M) = 0;

};

Implementation
class MyModulePass : public 

ModulePass

{

bool runOnModule

(Module & M)

{

for (iter = …

}

};

16



Questions?

• Keywords:

• Program Structure

• Iterators

• Downcasting

• LLVM Pass Interface

17



Transformations

18



Insert/Remove/Move/Replace Instructions

• Three Options

•Instruction class methods:

• insertBefore(), insertAfter(), moveBefore(), 
moveAfter(), eraseFromParent(), removeFromParent(), …

• Ask parent (BasicBlock) to do this:

• inst.getParent()->getInstList() 
.insert/erase/remove/…()

• Make use of BasicBlockUtils (defined in header 

llvm/Transforms/Utils/BasicBlockUtils.h):

• ReplaceInstWithValue(), ReplaceInstwithInst()

19


